Self-assembled and intercalated film of reduced graphene oxide for a novel vacuum pressure sensor
نویسندگان
چکیده
We report a new method for measuring vacuum pressures using Van der Waals (VDW) interactions between reduced graphene oxide (RGO) sheets. For this purpose, we utilized a reaction-based self-assembly process to fabricate various intercalated RGO (i-RGO) films, and monitored their electrical behavior with changing pressure and temperature. Pumping to remove gas from a vacuum chamber produced a decrease in the sheet resistance of i-RGO. With further pumping, distinctly different sheet resistance behaivors were observed depending on the measurement temperature. With increasing vacuum pressure, the resistance increased at 100 °C, whereas it decreased at 30 °C. Two types of VDW interactions are proposed to explain these features: a local VDW interaction between RGO sheets that resulted in V-shaped curves of sheet resistance with pressure changes and broad VDW interactions that occur between RGO sheets when the elastic force required to bend carbon clusters on an RGO sheet exceeds their vibrational energy at low temperatures. On the basis of the results, we propose that the resistance behavior of i-RGO as a function of vacuum pressure can be interpreted as the sum of the two different VDW interactions.
منابع مشابه
Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملElectrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor
Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملThickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis
Transparent SnO2 thin films were deposited on porcelain substrates using a chemical vapor deposition technique based on the hydrolysis of SnCl4 at elevated temperatures. A reduced pressure self-contained evaporation chamber was designed for the process where the pyrolysis of SnCl4 at the presence of water vapor was carried out. Resistive gas sensors were fabricated by providing ohmic contacts o...
متن کامل